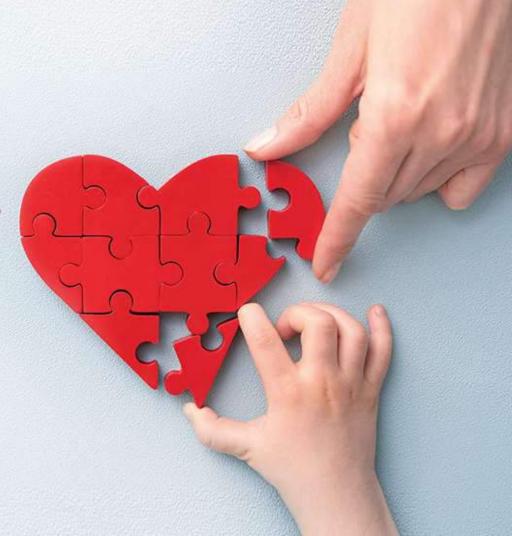
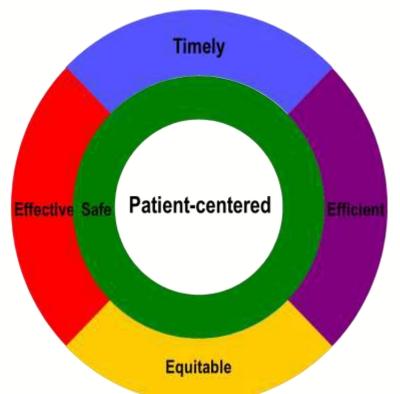
CARDIOLOGY 2024


QI Work: Challenges and Progress in the ECHO Lab

Thursday 2/15/2024

Anitha Parthiban MD Medical Director of Echocardiography Texas Children's Hospital



QI IN THE ECHO LAB

- Quality improvement (QI) metrics in the Echo Lab
- Incorporate QI into Echo Lab workflow
- Opportunities and Challenges

WHAT MEASURES TO PERFORM?

- 1. Safety: Diagnostic Accuracy
- 2. Effective: keeping with guidelines
- 3. Patient Centered : around patient needs
- 4. Timely: reducing wait
- 5. Efficient: eliminating waste
- 6. Equitable

WHAT MEASURES TO PERFORM?

GUIDELINES AND STANDARDS

American Society of Echocardiography
Recommendations for Quality Echocardiography
Laboratory Operations

Ensuring a high level of quality in echocardiography is a primary goal of the American Society of Echocardiography (ASE). Establishing a definition of quality in cardiovascular imaging has been challenging, and there has been limited agreement on quality standards for imaging. Quality can be measured as adherence to established guidelines for the use of a technology to ensure patient satisfaction and

ASE GUIDELINE QUALITY METRICS

- Compliance with protocol
- Inter-reader variability
- Documentation of measured EF
- Cross modality comparisons
- Communication timeliness, critical result reporting
- Patient wait time process to track and intervene

ECHO LAB ACCREDITATION

Part C: Quality Improvement	42
Section 1C: Quality Improvement Program STANDARD – QI Program	42
STANDARD – QI Program	42 42
Section 1C: Quality Improvement Program Guidelines	42
Section 2C: Quality Improvement Measures	43 43
Section 2C: Quality Improvement Measures Guidelines	
Section 3C: Quality Improvement Meetings STANDARD – QI Meetings	46
Section 4C: Quality Improvement Documentation STANDARD – QI Documentation	47 47
Bibliography	48
Appendix A	49

ACPC QUALITY NETWORK

Welcome Aniths Parthiban, MBB5, FACC My ACC | LOGOUT

NCDR ACCREDITATION CAMPAIGNS CLINICAL TOOLKITS LOGOUT

Home > Campaigns > ACPC Quality Network

Adult Congenital & Pediatric Quality Network

ACPC IMAGING METRICS

- TTE and fetal echo initial study completeness
- TTE and fetal echo initial study quality
- Diagnostic accuracy TTE, TEE, fetal
- Sedation echo complications
- TEE complication rate
- Critical result reporting
- Coronary artery imaging and reporting in KD

SOPE MULTICENTER COLLABORATIVE

- First multi-center effort to systematically study diagnostic errors (DE) in surgical patients
- Baseline data DE rate ~ 7%, not related to center volume
- 75% DE are preventable and related to cognitive or imaging factors
- Next steps: implement PDSA cycles to decrease error

WHY IS ECHO QI DIFFICULT?

@ Mark Parisi, Permission required for use.

Texas Children's

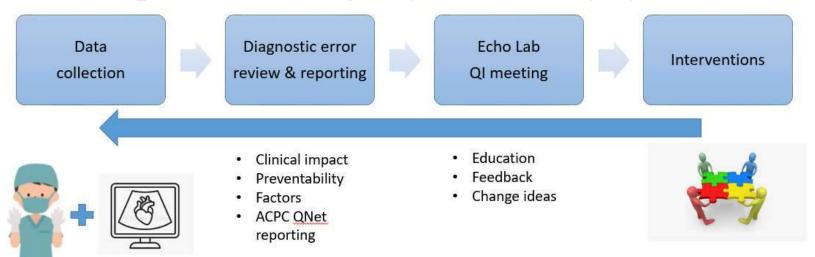
Hospital'

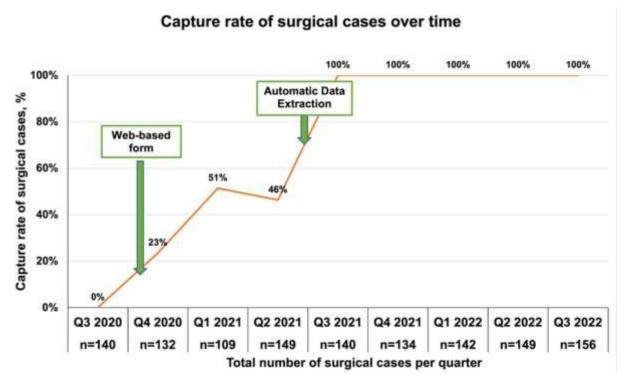
TCH DE PROJECT

- TCH surgical volume ~ 1200 /year
- TTE ~ 39 K , 41 echo readers , 50 sonographers, 8 campuses
- TEE ~ 1400 , 20 TEE faculty
- DE assessment cumbersome, manual
- Multiple educational efforts no unified purpose

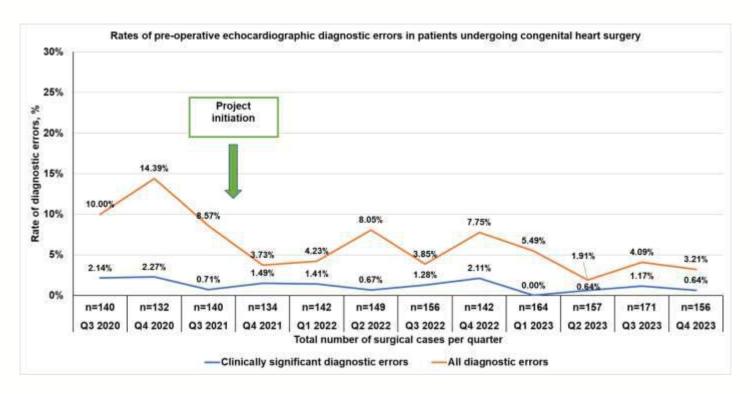
MOVING TOWARDS A SOLUTION

"Every process is perfectly designed to get the results that it gets."


Paul Bataldan

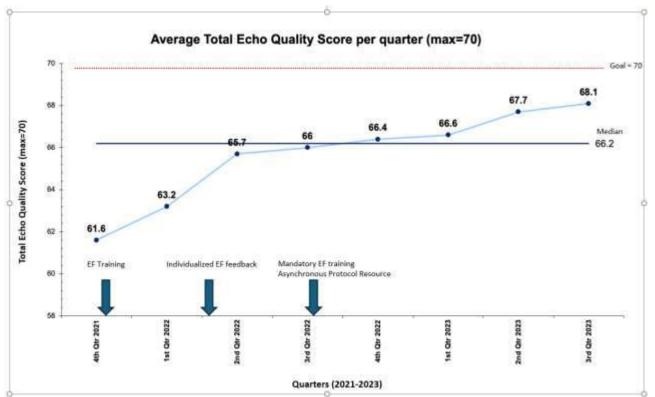

FROM TRACKING TO IMPROVEMENT

Aim: Reduce the rate of echocardiographic diagnostic errors in patients undergoing cardiac surgery at TCH



DE REPORTING

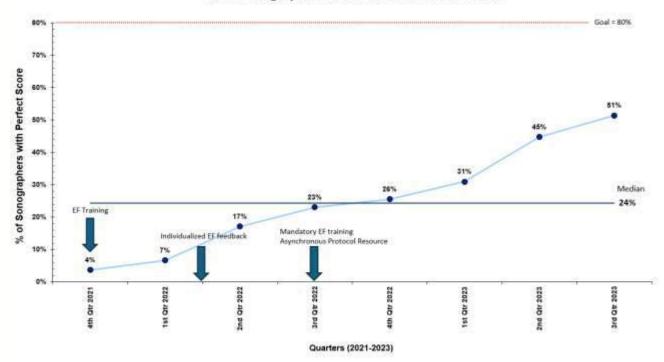
DE RATE



SUSTAINING IMPROVEMENT

- Set expectations for data sharing plan
- Creating a scorecard / dashboard
- Creating standard work
- Education and training
- Auditing and monitoring

STANDARDIZATION



CARDIOLOGY 2024

AUDITING AND FEEDBACK

% of Sonographers with Perfect Protocol Scores

EDUCATION, TESTING AND TRAINING

Can a Teaching Intervention Reduce Interobserver Variability in LVEF Assessment

A Quality Control Exercise in the Echocardiography Lab

Amer M. Johri, MD, Michael H. Picard, MD, John Newell, BA, Jane E. Marshall, RDCS, Mary Etta E. King, MD, Judy Hung, MD

Boston, Massachusetts

Educational Intervention to Reduce Outpatient Inappropriate Echocardiograms

A Randomized Control Trial

R. Sacha Bhatia, MD, MBA,* David M. Dudzinski, MD, JD,† Rajeev Malhotra, MD,† Creagh E. Milford, DO,† Danita M. Yoerger Sanborn, MD,† Michael H. Picard, MD,† Rory B. Weiner, MD†

DECREASE EF VARIABILITY BY 5/6 AREA- LENGTH METHOD

Variable	Phase I	Phase II	Phase III	Phase IV
LV length (diastole)	4.1 ± 3.6	2.8 ± 2.0***	2.6 ± 2.2***	2.9 ± 2.2***
LV length (systole)	6.3 ± 6.0	3.6 ± 2.8***	3.1 ± 2.9***	3.7 ± 4***
LV area (diastole)	9.1 ± 7.4	6.6 ± 6.5*	6.4 ± 9.4*	5.3 ± 5.8***
LV area (systole)	12.2 ± 8.9	12.0 ± 11.8	8.4 ± 12.5*	7.5 ± 8**
LV volume (diastole)	10.7 ± 8.4	7.6 ± 6.3**	7.4 ± 9.7**	6.9 ± 6.4**
LV volume (systole)	14.5 ± 10.5	13.2 ± 11.6	9 ± 11.8***	10.1 ± 9.2**
LV EF (percent error)	17.1 ± 17.3	16.4 ± 19.9	15.2 ± 16.6	10.8 ± 13.5*
EF difference from expert reader	5.9 ± 4.7	4.7 ± 3.7*	4.4 ± 3.3**	3.9 ± 3.4***

^{*} denotes significant change from baseline/phase I (*p<0.05, **p<0.01, ***p<0.001)

LEVERAGING TECHNOLOGY

Video-Based Deep Learning for Automated Assessment of Left Ventricular Ejection Fraction in Pediatric Patients

Charitha D. Reddy, MD, Leo Lopez, MD, David Ouyang, MD, James Y. Zou, PhD, and Bryan He, BS, Palo Alto, Los Angeles, and Stanford, California

SUMMARY

- QI is integral to Echo Lab operations
- Education and training
- Standard work
- Leverage technology
- Allocate resources
- Collaboration & new technology

IT TAKES A VILLAGE!

CARDIOLOGY 2024