CARDIOLOGY 2024

eHealth Technologies for CHD and Pediatric Patients

David A. White, PhD, ACSM-CEP, FACSM

Ward Family Heart Center Pediatric Physical Activity & Cardiac Exercise Science Program Children's Mercy Kansas City

Cardiology 2024 – *Data Tells the Story* February 15th, 2024

Disclosures

Ineligible Companies

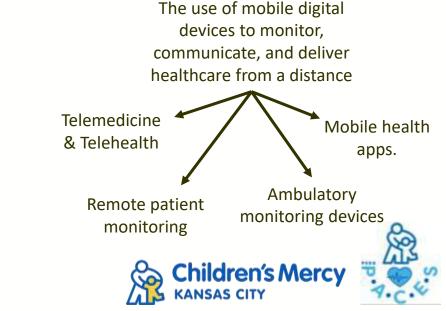
• None

Funding

- NIH-NHLBI K23HL159325
- Additional Ventures Single Ventricle Foundation (1019144)

Digital Healthcare Landscape

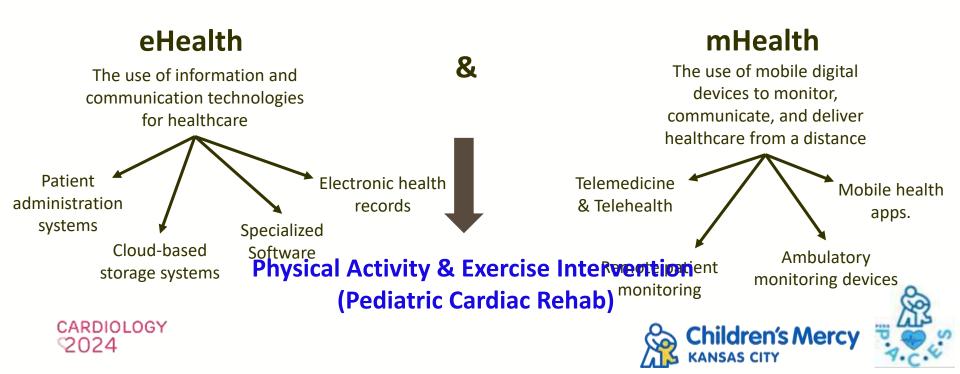
Chan. J Med Libr Assoc, 2021 Moss et al., Eur J Hosp Pharm, 2019 World Health Organization. eHealth [Internet]. <<u>https://www.who.int/ehealth/en/</u>>


Digital Healthcare

eHealth

The use of information and communication technologies for healthcare Patient administration systems Cloud-based Software storage systems

CARDIOLOGY 2024


mHealth

Digital Healthcare Landscape

Chan. J Med Libr Assoc, 2021 Moss et al., Eur J Hosp Pharm, 2019 World Health Organization. eHealth [Internet]. <<u>https://www.who.int/ehealth/en/</u>>

Digital Healthcare

mHealth for Delivering Cardiac Rehab

THE Review

Frontiers Frontiers in Cardiovascular Medicine

Cardiac Exercise Therapeutics Model POIL EHID 02 June 202 Doi 10.3389/fcvm.2023

Check for updates

OPEN ACCESS

FORTED BY Inga Voges University Medical Center Schlewig-Holstein, Germany

REVENED BY

Almudena Ortiz Garrido.

Regional University Hospital of Malaga, Spain Lee Pyles.

West Virginia University, United States

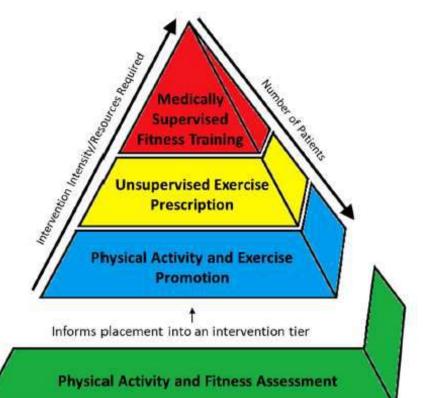
*CORRESPONDENCE David A. White

III dawhite @cmh.edu

RECEIVED 31 January 2023 ACCIPTED 18 May 2023 PUBLISHED 02 June 2023

COLUMN A.

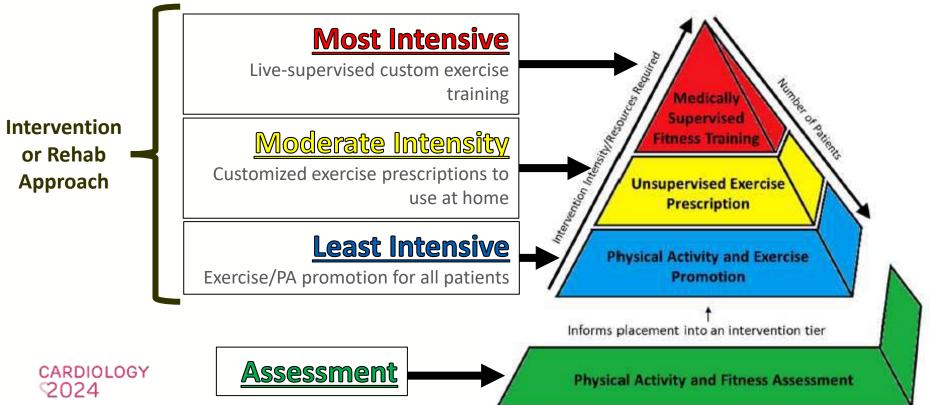
White DA, Layton AM, Curran T, Gauthier N, Orr WB. Ward K. Vernon M. Martinez MN. Rice MC, Hansen K, Prusi M and Hansen JE (2023) ehealth technology in cardiac exercise therapeutics for pediatric patients with congenital and acquired heart conditions: a summary of evidence and future directions. Front. Cardiovasc. Med. 10:1155861. dor 10 3389/fcvm 20231155861


CONVICUT

@ 2023 White, Layton, Curran, Gauthier, Orr, Ward, Vernon, Martinez, Rice, Hansen, Prusi and Hansen. This is an open-access article distributed under the terms of the Greative Commons Attribution License (CC BY). The use.

ehealth technology in cardiac exercise therapeutics for pediatric patients with congenital and acquired heart conditions: a summary of evidence and future directions

David A. White^{1,2*}, Aimee M. Layton³, Tracy Curran⁴, Naomi Gauthier⁴, William B. Orr⁴, Kendra Ward⁶, Meg Vernon⁷, Matthew N. Martinez⁴, Malloree C. Rice⁹, Katherine Hansen⁴, Megan Prusi¹⁰ and Jesse E. Hansen¹⁰ on behalf of The Technology Evaluation and Usage in Cardiac and Fitness Rehabilitation (TECH) working group from the Global Coalition for Fitness and Congenital Heart Disease (GLOCO)


"Ward Family Heart Center, Children's Mercy Kansas City, Kansas City, MO, United States, "School of Medicine, University of Missouri Kansas City, Kansas City, MO, United States, "Division of Pediatric Cardiology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States, "Department of Cardiology, Boston Children's Hospital, Boston, MA, United States, "Division of Pediatric Cardiology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MOL United States, "Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States, 'Division of Cardiology, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, United States, *Division of Pediatric Cardiology, Department of Pediatrics, Haspenfeld Children's Hospital at NYU Langone, New York, NY, United States, *Division of Pediatric Cardiology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States, ⁴⁰Division of Pediatric Cardiology, Department of Pediatrics, C.S. Mott Children's Hoppital, Ann Arbor, M., United States

White et al., Front Cardiovasc Med, 2023

mHealth for Delivering Cardiac Rehab

Cardiac Exercise Therapeutics Model

Physical Activity & Exercise Promotion

Physical Activity and Exercise

Promotion

Educating and encouraging patient/family to engage in physical activity and exercise

Klausen et al., 2016 – 'PReVaiL RCT' (Denmark) Lemire et al., 2020 (Canada) Benefits and harms of adding an eHealth Feasibility and impact of a tool kit of resources Aim Aim intervention to health education and individual for providing outpatient physical activity counseling in adolescents with CHD. counseling for children with CHD. Web-based platform CHEO (www.cheoactive.ca) eHealth MinPuls.nu software tool and a personal home eHealth Approach page (http://www.minpuls.nu/) Approach A physical activity tool kit • Tailored interactive text encouragement (weekly) • Simple, low-cost activity ideas/suggestions **Features Features** Exercise-planning and monitoring tool Activities aligned with the child's restrictions Motivation/encouragement Struggled with compliance Outcomes No change in Fitness Outcomes Study Ongoing – None to report No change in Physical Activity

Physical Activity & Exercise Promotion

Three arm RCT

Intervention Group 1

• "COOL Passport" mobile health app.

1. Personal health management	2. Eliminating endocarditis	 My nutritional decisions 	4. My progress
5. Understanding my medications	6. My physical fitness	7. My mood and feelings	8. My rights

Intervention Group 2

- "COOL Passport" + Health Promotion Cloud
 - $\ensuremath{\circ}$ Interactive gameplay
 - \circ Step counts
 - \circ CHD knowledge quizzes
 - Q&A with provider

			Promotion
Received: 29 July 2020	Revised: 25 March 2021	Accepted: 24 May 2021	
DOI: 10.1111/ian.14924			

ORIGINAL RESEARCH: CLINICAL TRIAL

Physical Activity and Exercise

Long-term effectiveness of an mHealth-tailored physical activity intervention in youth with congenital heart disease: A randomized controlled trial

Pei-Jung Lin¹ | Yong-Yi Fanjiang² | Jou-Kou Wang³ | Chun-Wei Lu³ | Kuan-Chia Lin⁴ | In-Mei Cheong⁵ | Kuan-You Pan⁶ | Chi-Wen Chen⁷ $_{\odot}$

³Department of Nursing, National Taiwan University Hospital, Taipei, Taiwan ²Department of Computer Science and

*Department of Computer Science and Information Engineering, Fu-Jen Catholic University, New Taipei, Taiwan

⁶Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan ⁴Institute of Hospital and Health Care Administration, National Yang Ming Chiao

Abstract

Aims: To evaluate the long-term effectiveness of the Care & Organize Our Lifestyle (COOL) programme, a self-regulation theory-based mHealth programme, on improving disease knowledge and physical activity in youth with congenital heart disease (CHD).

Design: A three-arm parallel-group randomized controlled trial.

No between group differences in change in physical activity after 12-months.

Physical Activity & Exercise Promotion

Phase I: Literature Review & Qualitative

- Strengths & weaknesses of other interventions
- Qualitative interviews

Phase II: Conceptualizing & Prototyping

• Building the platform

Phase III: Usability Evaluation

Piloting in parent/child dyads

Phase IV: Randomized Controlled Trial

- Implementing the platform over 12-weeks
- Outcomes: Fitness, Physical activity, Feasibility, Acceptability, Satisfaction

A WeChat-Based Rehabilitation Platform for Children and Adolescents with Congenital Heart Disease to Promote Cardiac FITness (HeartFIT): Protocol for a Mixed-Methods Strategy from Evidence-Based Design to Pilot Study

Yuan Li 11-3.*, Yaxin Zhou^{4,5,*}, Miao Chen⁶, Mei R Fu⁷, Biru Luo⁶, Pengming Yu^{4,5,8}, Hong Zheng^{1,9}, Fangfei Liu^{1,9}

Journal of Multidisciplinary Healthcare

Dovences

Physical Activity and Exercise Promotion

STUDY PROTOCOL

Unsupervised Exercise Prescription

Customized exercise prescription that outlines the frequency, intensity, duration, and modality of a self-directed exercise routine performed at home

Randomized Controlled Trial

- Intervention Group (n=35)
- Control group (n=35)

Participants

10-18 yrs. old) w/ moderate to complex CHD

Web-based exercise/motor intervention

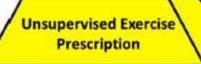
- 24-weeks
- 3x wk., 20-min/session

E-Health Exercise Intervention for Pediatric Patients with Congenital Heart Disease: A Randomized Controlled Trial

Michael Meyer, MSc^{1,2}, Leon Brudy, MSc^{1,2}, Angeles Fuertes-Moure, MD³, Alfred Hager, MD², Renate Oberhoffer-Fritz, MD^{1,2} Peter Ewert, MD^{1,2}, and Jan Müller, PhD^{1,2}

Objective To improve health-related physical fitness (HRPF) (primary outcome) and health-related quality of life (HRQoL) with a web-based motor intervention program in pediatric patients with congenital heart disease (CHD).

"One Hour a Week, Brings Mobility, Power and Speed!"



ORIGINAL

ARTICLES

CARDIOLOGY 2024

Unsupervised Exercise Prescription

Web-based e-Learning platform: "Einstein"

- Exercise videos transmitted to their homes
 - Exercise in-home at their convenience
- Videos served as a "Virtual training partner"
- <u>Adherence</u>: monitored with video tracking tool included in the exercise platform
- Can complete surveys and report RPE through the platform

Prescription

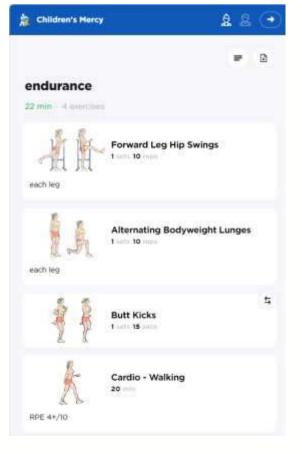
Unsupervised Exercise Prescription

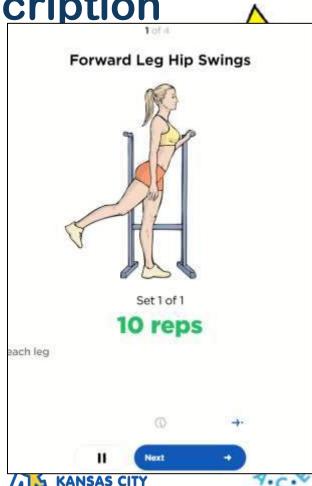
Unsupervised Exercise Prescription

	Table II. Mean differences between intervention and control group after 24 weeks of exercise intervention							
		Intervention group (n = 31)			Control group (n = 30)			
	HRPF	Baseline evaluation	24 weeks' follow-up	Difference, mean ± SD	Baseline evaluation	24 weeks' follow-up	Difference, mean ± SD	P value*
Fitness	Total, z score Curl-ups, z score Trunk-lift, z score Push-ups, z score Shoulder stretch, z score Sit and reach, z score HrQoL	$\begin{array}{c} -0.73 \pm 0.46 \\ -0.98 \pm 0.65 \\ -0.67 \pm 0.81 \\ -0.23 \pm 0.99 \\ -0.87 \pm 1.08 \\ -0.86 \pm 1.31 \end{array}$	$\begin{array}{c} -0.57\pm 0.58\\ -0.67\pm 0.98\\ -0.40\pm 1.03\\ -0.08\pm 1.21\\ -0.75\pm 1.23\\ -0.96\pm 1.43\end{array}$	$\begin{array}{c} 0.15 \pm 0.38 \\ 0.30 \pm 0.83 \\ 0.26 \pm 0.95 \\ 0.15 \pm 0.97 \\ 0.12 \pm 0.63 \\ -0.10 \pm 0.81 \end{array}$	$\begin{array}{c} -0.84 \pm 0.43 \\ -0.92 \pm 0.85 \\ -0.97 \pm 0.81 \\ -0.30 \pm 0.74 \\ -1.30 \pm 1.11 \\ -0.69 \pm 1.29 \end{array}$	$\begin{array}{c} -0.75 \pm 0.61 \\ -0.57 \pm 1.12 \\ -0.82 \pm 0.85 \\ -0.08 \pm 1.03 \\ -1.16 \pm 0.98 \\ -1.10 \pm 1.39 \end{array}$	$\begin{array}{c} 0.09\pm 0.38\\ 0.34\pm 0.77\\ 0.15\pm 0.85\\ 0.21\pm 0.73\\ 0.14\pm 0.73\\ -0.40\pm 0.80\end{array}$.560 .830 .621 .771 .912 .150
QoL	Total Physical well-being Emotional well-being Self-esteem Family Friends School	$\begin{array}{c} 77.38 \pm 9.63 \\ 79.03 \pm 16.58 \\ 81.85 \pm 9.92 \\ 67.54 \pm 16.88 \\ 86.69 \pm 13.57 \\ 77.82 \pm 19.01 \\ 71.37 \pm 17.43 \end{array}$	$\begin{array}{c} 76.20 \pm 9.82 \\ 76.11 \pm 16.92 \\ 84.15 \pm 9.84 \\ 64.73 \pm 16.24 \\ 86.85 \pm 12.86 \\ 77.44 \pm 19.28 \\ 69.19 \pm 16.57 \end{array}$	$\begin{array}{c} -1.73\pm8.33\\ -2.90\pm16.00\\ 2.00\pm9.32\\ -4.01\pm18.72\\ -0.43\pm12.93\\ -2.08\pm19.07\\ -2.23\pm16.51\end{array}$	$\begin{array}{c} 77.84 \pm 11.31 \\ 76.62 \pm 16.11 \\ 81.87 \pm 12.64 \\ 65.30 \pm 18.92 \\ 87.28 \pm 19.15 \\ 79.95 \pm 15.25 \\ 77.08 \pm 15.12 \end{array}$	$\begin{array}{c} 79.37 \pm 9.32 \\ 76.45 \pm 14.92 \\ 85.69 \pm 12.17 \\ 66.04 \pm 18.25 \\ 88.54 \pm 12.18 \\ 82.11 \pm 12.24 \\ 76.56 \pm 15.92 \end{array}$	$\begin{array}{c} 1.31 \pm 7.85 \\ 0.83 \pm 15.28 \\ 3.82 \pm 10.86 \\ 0.01 \pm 17.50 \\ 0.86 \pm 16.93 \\ 2.23 \pm 17.28 \\ -0.96 \pm 15.78 \end{array}$.160 .367 .500 .406 .745 .375 .774

*Student t test difference between intervention group and control group with P values < .05 considered significant.

CARDIOLOGY 2024


Unsupervised Exercise Prescription


WorkoutLabs mobile app.

- Design workouts
- Schedule workouts
- Notifications sent to mobile device
- Tracking for adherence

No research...yet

CARDIOLOGY

Heart Rate

flipent

Calories

1000

Steps.

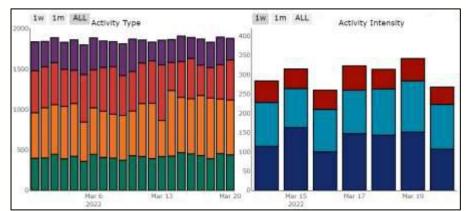
Unsupervised Exercise Prescription

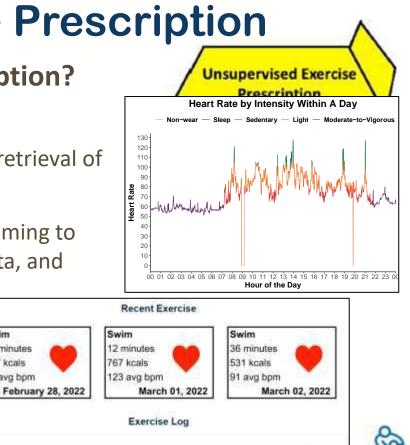
Swim

29 minutes

527 kcals

Clarke


Tine


Type

80 avg bpm

Adherence to in-home exercise prescription? → Wearable *Data Tells the Story*

- Application programming Interface (API) remote retrieval of data and events from wearables
- Software Development Kit (SDK) custom programming to communicate directly with the devices, retrieve data, and manipulate the device remotely.

Duration

oninated

A structured and supervised exercise program, beyond exercise prescription, designed to provide advanced monitoring and support for the most deconditioned patients.

Healthy Hearts via Live Videoconferencing

Participants

- n=14 (8-19 yrs. old)
- ≥1 year post heart transplant

Objectives

Healthy Hearts via Live Videoconferencing: An Exercise and Diet Intervention in Pediatric Heart Transplant Recipients

Argela C. Chen, 85; Faustine D. Raminez, MD; David N. Rosenthal, MD; Sanah C. Couch, PHD, RD; Samuel Berry, MS; Katle J. Staufler, RDCS; Janid Brabender, RDCS; Nancy McDonald, NP; Donna Lee, NP; Lynaey Barkott, NP; Susan E. Yourse, MD; Jeffrey Kazmucha, ME, QES; CSCS; C. Jason Wang, MD; PHD; Inger Olson, MD; Elf Seda Selamet Tierney, MD

Bookground -Pediatric heart transplant recipients have high-tisk cardiovascular profiles that can affect their long-term outcomes; however, promoting exercise and healthy diet has not been a major focus in the field. The objective of this study was to test the feasibility and impact of a supervised exercise and diet intervention delivered via live videoconferencing in this population.

- 1. Feasibility and impact of an exercise and nutrition intervention
- 2. The use of live videoconferencing to deliver the intervention

CARDIOLOGY 2024

Chen & Tierney et al., *J Am Heart Assoc*, 2020 Chen & Tierney et al., *Pediatr Transplant*, 2019

Healthy Hearts via Live Videoconferencing

Diet:

- Dietary Approaches to Stop Hypertension (DASH)
- 1x wk. nutrition sessions via telehealth

Exercise:

- 3x wk. for 60 min (In-home)
- 1-on-1 sessions w/ health coach via videoconferencing

Tablet computer with internet connection

Sessions delivered using the Vsee™ telemedicine platform

CARDIOLOGY 2024

Chen & Tierney et al., *J Am Heart Assoc*, 2020 Chen & Tierney et al., *Pediatr Transplant*, 2019

Children's Mercy

Medically Supervised

itness Trainin

Healthy Hearts via Live Videoconferencing

Outcome			tervention Testing ledian Change)	
BMI Percentile		\checkmark	27 %ile points	
Endothelial Function		个 0.29 Rea	active Hyperemia index	
VO2peak (% predicted)		个 6.4 percentage points		
Functional Movement Screen		\uparrow :	2.5 (FMS score)	
Daily consumption of saturated fat		↓ 6 grams		6
CARDIOLOGYChen & Tierney et al., J Am Heart Assoc, 20202024Chen & Tierney et al., Pediatr Transplant, 2019			Children's Mercy	p.v.

Adherence/Compliance

	Healthy Hearts via Live Videoconferencing <u>Chen & Tierney et al., 2019, 2020</u>	Exercise/Motor Intervention <i>via Pre-recorded Videos</i> <u>Meyer et al., 2018, 2021</u>
Exercise Sessions	89.6 ± 11% % of scheduled sessions attended	33% (IQR 8%-60%) Mean weekly exercise adherence
Nutrition Sessions	88.4 ± 10%	-

Medically Supervised

tness Trainin

Ongoing Work: MedBIKE™

- Custom telemedicine cycle ergometer youth with CHD
- Video game platform

S2024

Gamification

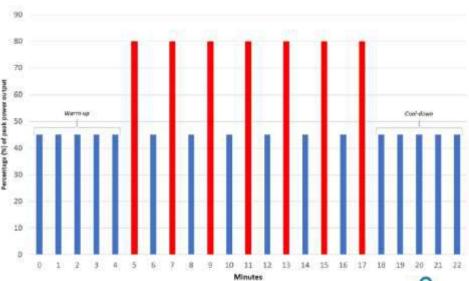
Images courtesy of Dr. Michael Khoury, MD Khoury et al., Cardiol Young, 2020 Khoury et al., CJ Cardiol, 2020

CARDIOL Boulanger et al., MedBIKE: Virtual Reality for Remote Cardiac Rehab. In Assistive and Rehabilitation Engineering, 2019

CARDIOLOGY 2024 Khoury et al., *Cardiol Young*, 2020 Khoury et al., *C J Cardiol*, 2020 Boulanger et al., MedBIKE: Virtual Reality for Remote Cardiac Rehab. In Assistive and Rehabilitation Engineering, 2019

Cardiac rehabilitation in the paediatric Fontan population: development of a home-based high-intensity interval training programme

Michael Khoury¹^(a), Devin B. Phillips², Peter W. Wood³, William R. Mott⁴, Michael K. Stickland², Pierre Boulanger⁴, Gwen R. Rempel⁵^(a), Jennifer Conway¹, Andrew S. Mackie¹ and Nee S. Khoo¹


¹Division of Pediatric Cardiology, Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada; ²Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; ³Division of General Internal Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; ⁴Department of Computing Science, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada; ⁴Department of Health Disciplines, Athabasca University, Alberta, Canada

Abetenet

CARDIOLOGY

2024

MedBIKE HIIT Protocol

ildren's Mercy

Medicall

Supervised

<u>**Remote</u>**ly Delivered <u>**Ca</u>rdiac** <u>**Re**</u>habilitation for Adolescents with <u>**C**</u>ongenital <u>**H**</u>eart <u>**D**</u>isease</u></u>

Remote CaRe CHD Trial

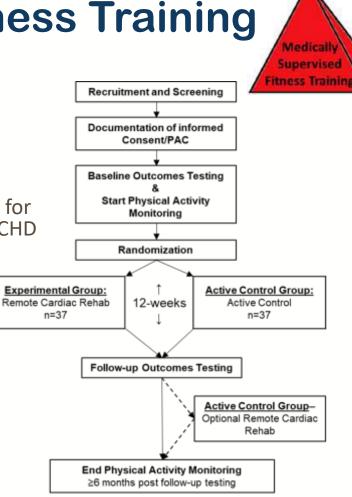
David A. White, PhD (PI) NIH – NHLBI K23HL159325

Medical

Medically Supervised Fitness Training Remote CaRe CHD Trial

Randomized Controlled Trial

Purpose


To evaluate the effectiveness of video-based mHealth tech for the delivery of real-time CR to groups of adolescents with CHD in their homes.

Participants

Targeted Sample Size: n=74

- Ages 12-19 yrs. with:
 - 1. Fontan (n=26)
 - 2. Tetralogy of Fallot (n=24)
 - 3. Dextro-transposition of the great vessels (n=24)

CARDIOLOGY 2024

Remote CaRe CHD Trial

Primary Outcome

• Cardiorespiratory Fitness (VO2peak)

Secondary Outcomes

- Cardiac Function (Echocardiogram)
- Lean Body Mass (DXA)
- Frailty

Exploratory Outcomes

- Gross Motor Proficiency
- Quality of Life
- Physical Activity Self-Efficacy

- Physical Activity
- Program Satisfaction
- Skeletal Muscle Oxidative Capacity
- Cost Effectiveness

Medically

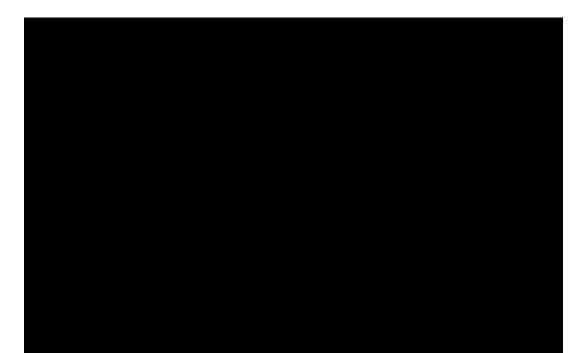
tness Trainin

Remote CaRe CHD Trial

Remote Cardiac Rehab Group

Medically Supervised

itness Trainin


Remote CaRe CHD Trial

12-week Intervention

- 2-week Ramp-up
 - 1-1 with health coach (live)
- 10-weeks Group-based exercise
 - Up to 5 per group
- ✓ Supervision ✓ Live interaction
- ✓ Music ✓ Peer support

Group-Based Approach

 \downarrow costs & may \uparrow potential for implementation & dissemination

Medicall Supervised

itness Trainin

Closing

The use of eHealth and mHealth technologies are growing rapidly in the delivery of exercise and physical activity interventions.

eHealth and mHealth can..

- Reduce costs
- Increase access
- Provide opportunities to monitor patients from a great distance
- ➢ Facilitate communication
- Collect data (small and large scale)

<u>Applying mHealth and eHealth technologies alone ≠ NOT an intervention</u>

The technology is ONLY the tool/method for which

the intervention is delivered.

CARDIOLOGY 2024

Questions? dawhite@cmh.edu Scan to learn more about the <u>Remote CaRe</u> <u>CHD Trial</u>

Children's Mercy KANSAS CITY

