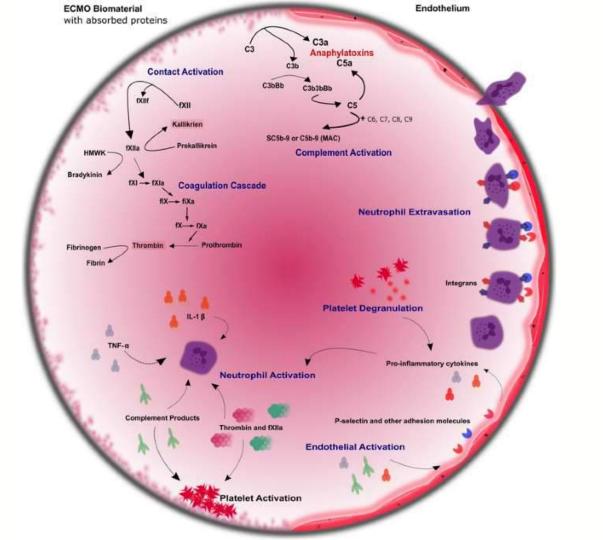
CARDIOLOGY 2024

ANTICOAGULATION FOR ECMO
THE DEBATE CONTINUES

Michael P Goldsmith, MD
Cardiac Critical Care Medicine
Children's Hospital of Philadelphia

Saturday Feb 17th 2024

DISCLOSURES


• I will review off label use of medications

GOALS

- Review challenges in effective ECMO Anticoagulation
- Review data behind anticoagulation strategies

PEDIATRIC ECMO COMPLICATIONS

Bleeding 70%

Thrombosis 37%

Dalton et al. Am J Resp and Crit Care Med. 2017

CARDIOLOGY 2024

Patient Clot 13%

Circuit Clot 31%

ELSO COMPLICATION DATA

	Neonatal Cardiac			Pediatric Cardiac		
	Complications N (%)	After Complication Survival N (%)	Difference Between Average and After Complication Survival (%)	Complications N (%)	After Complication Survival N (%)	Difference Between Average and After Complication Survival (%)
Mechanical						
Oxygenator failure	123 (4)	36 (29)	16	205 (5)	94 (46)	11
Pump malfunction	37 (1)	12 (32)	13	49 (1)	22 (45)	12
Cannula problem	156 (5)	52 (33)	12	194 (5)	92 (47)	10
Air in circuit	101 (3)	33 (33)	12	105 (3)	49 (47)	10
Patient	55/53	8.15			1.00	
Seizure by EEG	100 (4)	41 (41)	4	101 (3)	42 (42)	15
Cerebral infarct	93 (3)	31 (33)	12	231 (6)	83 (36)	21
ICH	326 (11)	91 (28)	17	251 (6)	65 (26)	31
Brain death	21 (1)	0	45	107 (3)	0	57
Cardiac tamponade	148 (5)	62 (42)	3	171 (4)	66 (39)	18
Surgical site bleeding	739 (26)	257 (35)	10	974 (25)	496 (51)	6
GI hemorrhage	35 (1)	7 (20)	10 25 -22	79 (2)	18 (23)	34
Amputation	3 (0.1)	2 (67)	-22	4 (0.1)	3 (75)	-18

ECLS, extracorporeal life support; EEG, Electroencephalogram; ICH, intracranial hemorrhage.

Mechanical and Patient-Related Complications with Cardiac ECLS, 2009–2015

COMPLICATIONS WHILE ON ECMO FOR SURGICAL AND MEDICAL PEDIATRIC CICU HOSPITALIZATIONS

Complication Type	Surgical N=329	Medical N=120	Time to onset (days)
Bleeding requiring reoperation	83 (25.2%)	4 (3.3%)	1.4 (0.5-3.5)
Unplanned reoperation or re-intervention	74 (22.5%)	8 (6.7%)	2.2 (1.0-4.0)
Hemothorax requiring intervention	16 (4.9%)	1 (0.8%)	2.1 (0.5-3.4)
Stroke	29 (8.8%)	18 (15.0%)	2.9 (0.8-5.6)
Seizure	37 (11.3%)	13 (10.8%)	1.2 (0.5-2.3)
IVH > grade II	8 (2.4%)	2 (1.7%)	0.7 (0.2-6.0)
Intracranial hemorrhage	21 (6.4%)	14 (11.7%)	2.2 (1.1-7.1)
Brain death	2 (0.6%)	7 (5.8%)	1.7 (1.0-6.0)
CRRT	42 (12.8%)	18 (15.0%)	2.8 (0.9-5.5)
Infection *†	21 (6.4%)	12 (10.0%)	4 (2-7)
Necrotizing enterocolitis [†]	6 (1.8%)	2 (1.7%)	5.5 (3-6.5)
Hepatic failure	18 (5.5%)	14 (11.7%)	2 (0-6.5)

Brunetti et al.. Pediatr Crit Care 2018;19:544-552

CARDIOLO 2024

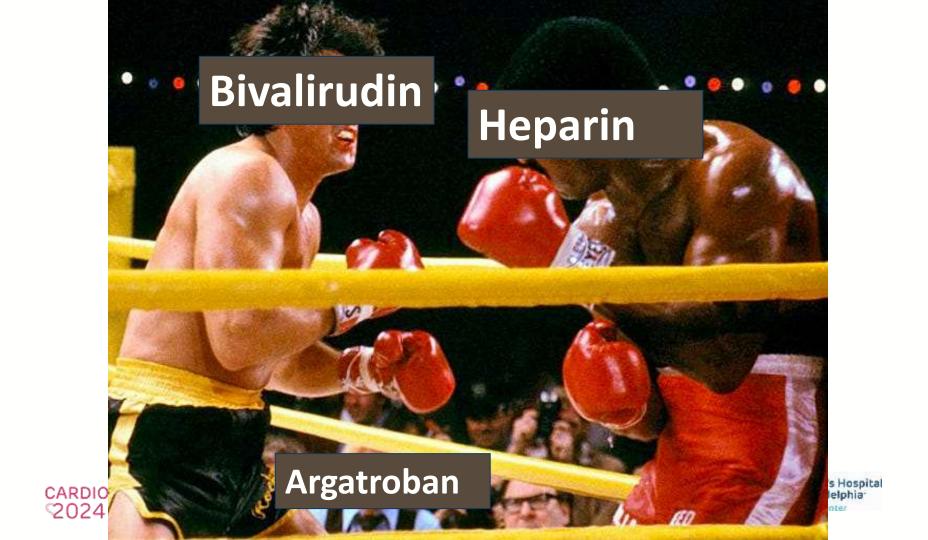
2021 ELSO Adult and Pediatric Anticoagulation Guidelines

ALI B.V. McMichael,* Lindsay M. Ryerson,† Damian Ratano,‡§ Eddy Fan,‡ David Faraoni,¶ and Gail M. Annich||

Reviewers: Graeme MacLaren,** Giles J. Peek, ++ Marie E. Steiner, ++ Ravi R. Thiagarajan, §§

Anticoagulant	Mechanism of Action	Half-Life (mins)	Advantages	Disadvantages
UFH	Main: binds to AT to inhibit thrombin and Xa	60–90 (adults) and 35–75 (pediatrics)	Inexpensive; has antidote (protamine)	Binds to other plasma proteins; heparin induced thrombocytopenia
Bivalirudin	Reversibly binds to thrombin	25 (adults) and 15–42 (pediatrics)	Does not require AT	No antidote, caution with blood stasis and renal dysfunction
Argatroban	Reversibly binds to thrombin	39–51	Does not require AT; not degraded by serine proteases	

2021 ELSO Adult and Pediatric Anticoagulation Guidelines


ALI B.V. McMichael,* Lindsay M. Ryerson,† Damian Ratano,‡§ Eddy Fan,‡ David Faraoni,¶ and Gail M. Annich||

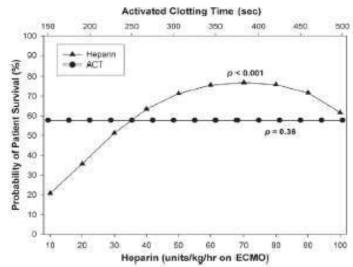
Reviewers: Graeme MacLaren,** Giles J. Peek,†† Marie E. Steiner,‡‡ Ravi R. Thiagarajan,§§

For VA-ECMO, given the concerns of systemic emboli, the routine use of anticoagulation is currently recommended. A recent retrospective study on VA-ECMO patients suggested that the absence of anticoagulation is safe in adult VA-ECMO patients and is associated with decreased transfusion and hemorrhagic complication without an increase in thrombotic events.⁵³

ANTICOAGULANTS – HEPARIN

- Dependent on Antithrombin
- Inhibits unbound thrombin and factor Xa
 - No effect on clot-bound thrombin
- Reversed with protamine
- Hepatic and Renal clearance
- 1-2 hour half life
- Age-dependent activity
- Antithrombin deficiency leads to resistance

AGE DEPENDENT ANTITHROMBIN III LEVELS


Day of Life	Serum ATIII Range (% of Adult Values)
1	63 (39–87)
5	67 (41–93)
30	78 (48–108)
90	97 (73–121)
180	104 (84–124)

ATIII, antithrombin III

ANTICOAGULATION AND PEDIATRIC ECMO

- Retrospective review of 604 pediatric ECMO patients
- Survival is improved by increased heparin dose up to 70 units/kg/hr independent of ACT levels
- ACT levels did not necessarily correlate with increased heparin doses

	Survivors	Non survivors	p Value
All patients (n)	349	255	
ECMO time (hours)	171 ± 103	197 ± 166	0.017
ACT (seconds)	225 ± 40	229 ± 62	0.36
Heparin (units/kg/hr)	49 ± 20	39 ± 22	<0.001

- 72% had written protocol for anticoagulation and blood product management
- 69% anticoagulation managed by ICU team
- 100% use of heparin (various doses)
 - 8% DTI use in prior 6 months
 - Various adjunct meds

ACT goal (sec) (n=116 respondents)	Minimum ACT goal, mean (SD)	183 (13), range 140– 220
	Maximum ACT goal, mean (SD)	210 (15), range 170– 240
	We do not follow ACT (n=3 respondents)	

Anti-factor Xa measurements (n=115 respondents)	Routinely	46 (40%)
	Occasionally	29 (25%)
	Never	40 (35%)

ATIII measurements (n=117 respondents)	Routinely	60 (51%)
	Occasionally	36 (31%)
	Never	21 (18%)

TEG measurements (n=116 respondents)	Routinely	21 (18%)
	Occasionally	29 (25%)
	Never	66 (57%)

ANTICOAGULANTS – BIVALIRUDIN

- Direct thrombin inhibitor
- Inhibits unbound and clot-bound thrombin
- No Reversal agent
- PTT and Direct Thrombin Time
- Proteolytic degradation
- 25 minute half life
- Less variability in pharmacokinetics

Bivalirudin-based versus conventional heparin anticoagulation for postcardiotomy extracorporeal membrane oxygenation

Marco Ranucci^{1*}, Andrea Ballotta¹, Hassan Kandil¹, Giuseppe Isgrò¹, Concetta Carlucci¹, Ekaterina Baryshnikova¹ and Valeria Pistuddi¹, for the Surgical and Clinical Outcome Research Group

- Retrospective single center comparative analysis of heparin vs. bivalirudin for adult and pediatric postcardiotomy ECMO.
- 8 heparin patients & 13 bivalirudin patients
- ACT, PTT, TEG r time monitoring
- Bivalirudin group: less bleeding & thrombotic events, less overall blood loss, less transfusions, less AT, lower cost in pediatric patients

Prospective Exploratory Experience With Bivalirudin Anticoagulation in Pediatric Extracorporeal Membrane Oxygenation

Lindsay M. Ryerson, MD^{1,2}; Kelsey R. Balutis, MD^{1,2}; Donald A. Granoski, RRT^{2,3}; Lee-Ann R. Nelson, MSc⁴; M. Patricia Massicotte, MD¹; Laurance L. Lequier, MD^{1,3}; Mary E. Bauman, RN, MN¹

- Single center pilot study of PICU and Pediatrc CICU patients
- Determine if bivalirudin led to less circuit interventions in patients previously treated with heparin
- *KID-CLOT team guided management
- 20 ECMO runs: 80% heparin failure, 20% primary bivalirudin
- Bivalirudin group: Lower circuit interventions, no difference in patient thrombotic events, more bleeding events

Evaluation of Bivalirudin As an Alternative to Heparin for Systemic Anticoagulation in Pediatric Extracorporeal Membrane Oxygenation

Mohammed Hamzah, MD1; Angela M. Jarden, MSN2; Chidiebere Ezetendu, MD1; Robert Stewart, MD3

- Retrospective single center comparative analysis pre- and postbivalirudin implementation
- 32 PICU patients: 16 heparin and 16 bivalirudin
- Bivalirudin: faster time to therapeutic
- Heparin: more bleeding, more thrombotic events (p=0.1), more PRBCs and FFP, higher cost per day
- Similar recovery, decannulation, mortality rates

BIVALIRUDIN VS HEPARIN

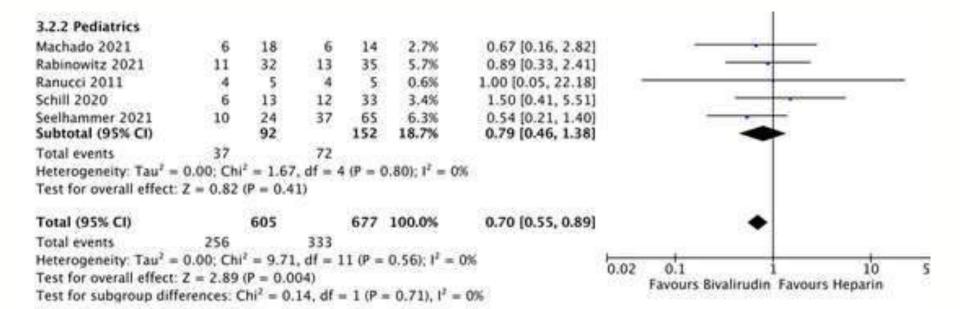
Parameters	Heparin (n = 27)	Primary bivalirudin $(n=8)$	p Value (comparing heparin and primary bivalirudin groups)
Time to achieve target aPTT (h)	12 (5.75,26)	14.5 (6.7,16)	0.373
Percent aPTT in target range T-7 days (median)	44.0 (21.0, 53.0)	65.0 (47.5, 72.0)	0.014
Percentage of aPTT with $>$ 30% variability from goal, median (IQR)	30.0 (18.0, 58.0)	9.0 (3.0, 17.5)	0.003

aPTT: activated partial thromboplastin time.

BIVALIRUDIN VS HEPARIN

- Retrospective Review
- 89 Pediatric ECMO Runs, 8 VV ECMO

	Pediatric		
Variable	Bivalirudin Estimate (95% CI)	P	
Hospital mortality	0.56 (0.21-1.49)	0.24	
ECMO-free days (14 d) ^d	1.9 (-0.2 to 3.9)	0.07	
Hospital-free days (35 d) ^d	4.2 (0.4-8.1)	0.03	
Anticoagulant dose changes per day ^b	0.75 (0.47-1.19)	0.23	
Activated partial thromboplastin time, laboratories per day	0.36 (-0.40 to 1.11)	0.35	
Any transfusion during first 24 hr on ECMO	0.28 (0.10-0.81)	0.02	
Any transfusion day 2 through first week on ECMO°	0.46 (0.09-2.38)	0.36	
Other circuit interventions	0.95 (0.34-2.69)	0.93	
Any ischemic complication	0.62 (0.16-2.44)	0.49	
Required additional run on ECMO	1.89 (0.54-6.64)	0.32	


FCMO = extracorporeal membrane oxygenation.

Seelhammer et al. Critical Care Medicine. 2021

BIVALIRUDIN VS HEPARIN

2021 ELSO Adult and Pediatric Anticoagulation Guidelines

ALI B.V. McMichael,* Lindsay M. Ryerson, † Damian Ratano, ‡§ Eddy Fan, ‡ David Faraoni, ¶ and Gail M. Annich||

Reviewers: Graeme MacLaren,** Giles J. Peek, ++ Marie E. Steiner, ++ Ravi R. Thiagarajan, §§

Several retrospective case series have examined the use of DTIs compared with UFH for pediatric and adult ECMO patients. 13-29 Large, prospective randomized trials are needed to confirm the efficacy and superiority of DTIs before their use as the primary anticoagulant for ECMO patients.

SUMMARY

- Data is not there yet
- At least Equivalent
- Probably better in adult-sized patients
- Probably better in difficult-to-anticoagulated patients
- Based on VAD Data, potentially better in long-runs

