# Temporary ventricular assist device support: device selection and pediatric experience

Katsuhide Maeda, MD. PhD

Children's Hospital of Philadelphia

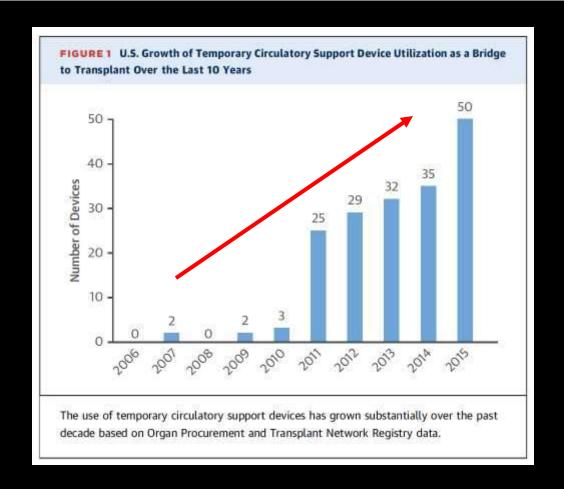
## Disclosures

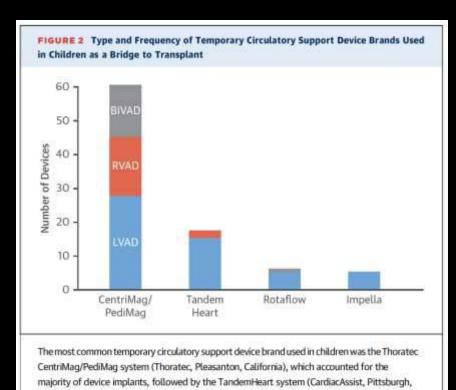
Surgical consultant for Abbot and Berlin Heart

Advisory board member for Abiomed

• Trend in temporary circulatory support device in pediatric population

Device selection and its mechanism

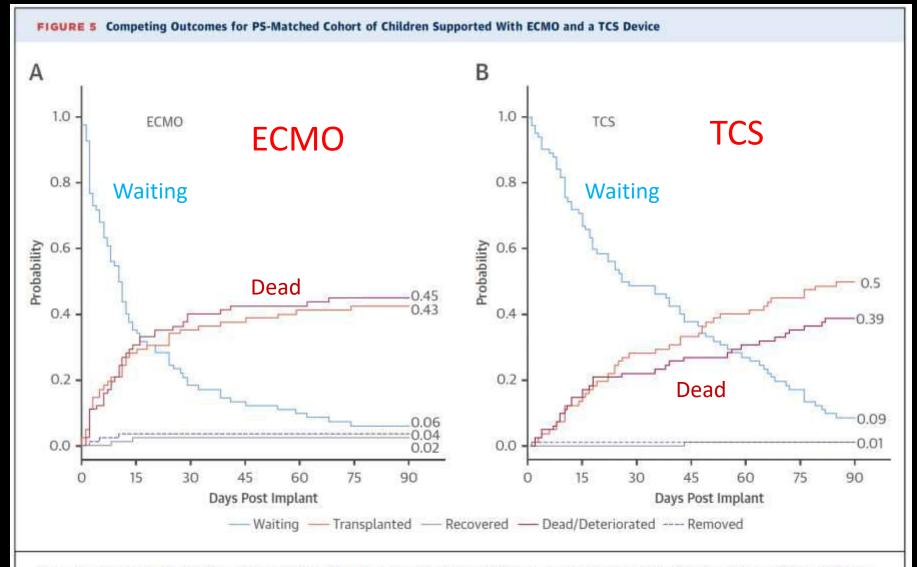

 Pediatric use of temporary circulatory support microaxial support (Impella ®)


• Use of Impella® in ECMO patients (ECMELLA, ECPELLA)

# Temporary Circulatory Support in U.S. Children Awaiting Heart Transplantation



Vamsi V. Yarlagadda, MD, a,c Katsuhide Maeda, MD, b,c Yulin Zhang, PhD,c Sharon Chen, MD, a,c John C. Dykes, MD, a,c Mary Alice Gowen, RN,c Paul Shuttleworth, BSN,c Jenna M. Murray, NP,c Andrew Y. Shin, MD, a,c Olaf Reinhartz, MD, b,c David N. Rosenthal, MD, a,c Doff B. McElhinney, MD, MS, a,c Christopher S. Almond, MD, MPHa,c



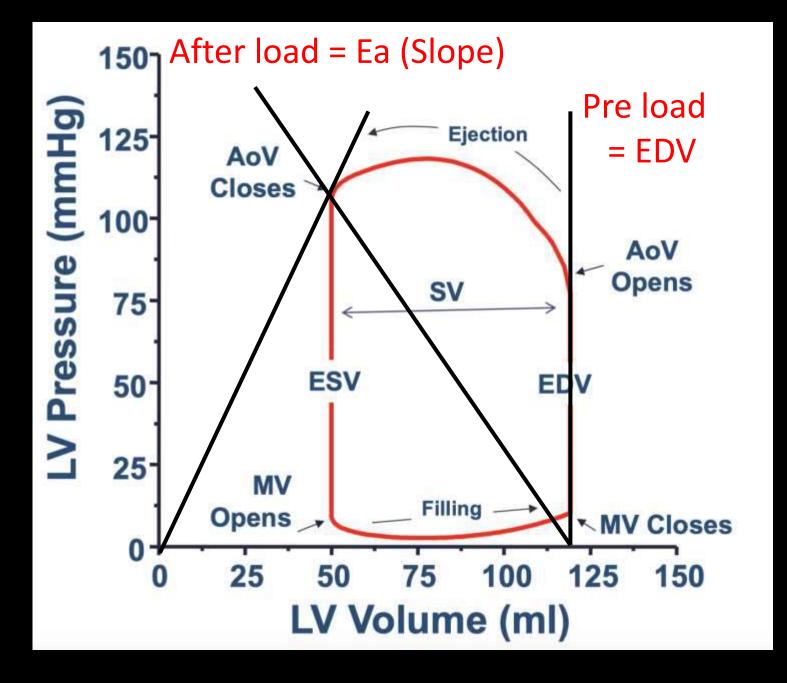



Pennsylvania), the Maguet Rotaflow System (DataScope/Maguet, Rastatt, Germany), and the

Impella system (Abiomed, Danvers, Massachusetts). BIVAD = biventricular assist device;

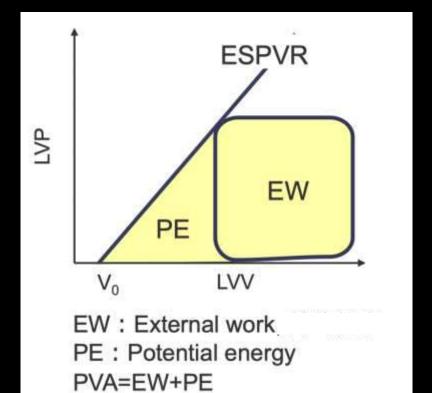
LVAD = left ventricular assist device; RVAD = right ventricular assist device.




The x-axis represents the time interval from device implant to transplant, death, or recovery. There is a modest reduction in mortality while awaiting heart transplant for children supported with a TCS device (39%) versus an ECMO device (45%) after propensity matching. (A) Competing outcomes for the PS-matched ECMO cohort. (B) Competing outcomes for the PS-matched TCS cohort. Abbreviations as in Figure 4.

Trend in temporary circulatory support device

Device selection and its mechanism


Pediatric use of temporary circulatory support device.

Use of Impella® in ECMO patients (ECMELLA, ECPELLA)



## PV loop

MVO2 (myocardium oxygen consumption)



## Key points for MCS

- 1. Two separate goals...
  - 1. maintain systemic circulation, 2. recovery of the heart

2. Total cardiac output = MCS output + native cardiac output

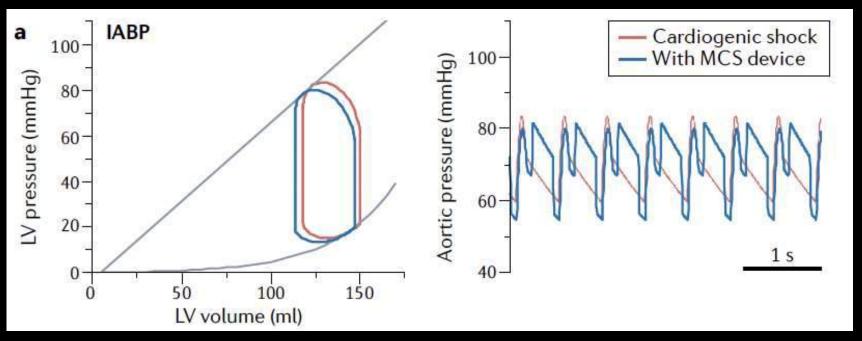
3. What is good for end organs (better total cardiac output) is not necessarily mean a good thing for heart recovery

4. Maintain MVO2 (PVA=SW + PE) low for cardiac recovery

5. Inflow (drainage) cannula location is important

### Differences between TCS and long-term durable VAD

Temporary circulatory support (TCS) ...


hoping for short-term heart recovery or as a bridge to VAD/transplant

Long term durable VAD ...

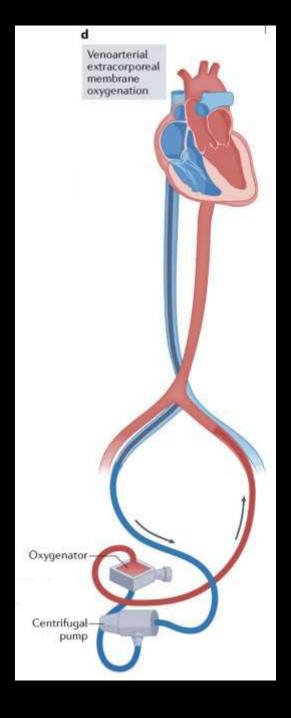
more focus on maintaining systemic circulation as a destination or a bridge to transplant long-term heart recovery

# Pulsatile-flow, percutaneous LV device Intra-aortic balloon pump Aorta-Inferiorvena cava -Descending aorta

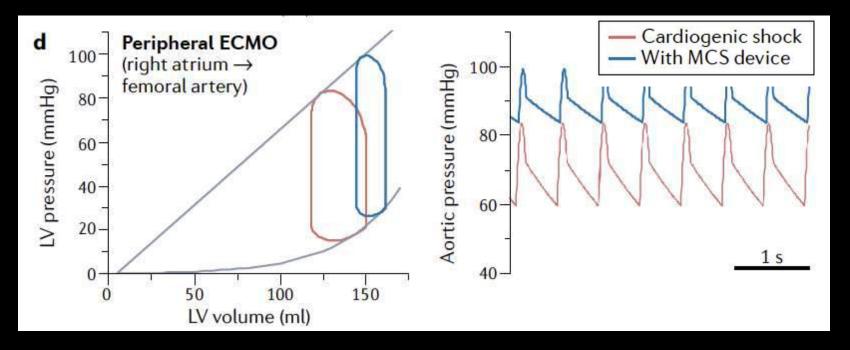
### **IABP**






Total cardiac output ... up

Pre load ... almost the same


After load ...slightly down

MVO2 ...slightly down

Inflow: Aorta



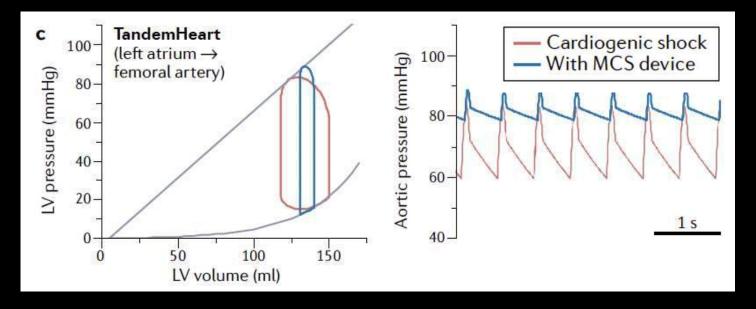
### **ECMO**





Total cardiac output ... up

Pre load ... increase


After load ... increase

MVO2 ... increase

Inflow: RA (SVC/IVC)

## Transseptal Femoralartery Femoral vein Oxygenate Centrifugal pump Centrifug pum

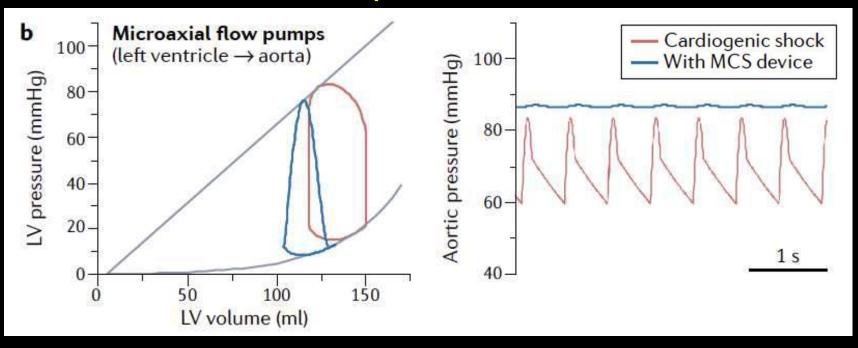
## Tandem Heart (LA to Ao)

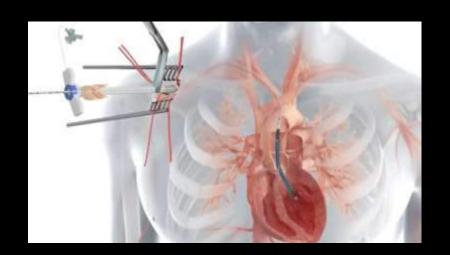




Total cardiac output ... up

Pre load ... down


After load ...increase


MVO2 ... down

Inflow: LA

## Microaxial flow Ь Left Right atrium atrium Aorta Rightventricle Left ventricle

## Impella®





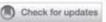
Total cardiac output ... up

Pre load ... down

After load ...down

MVO2 ... down

#### Inflow: LV


Trend in temporary circulatory support device

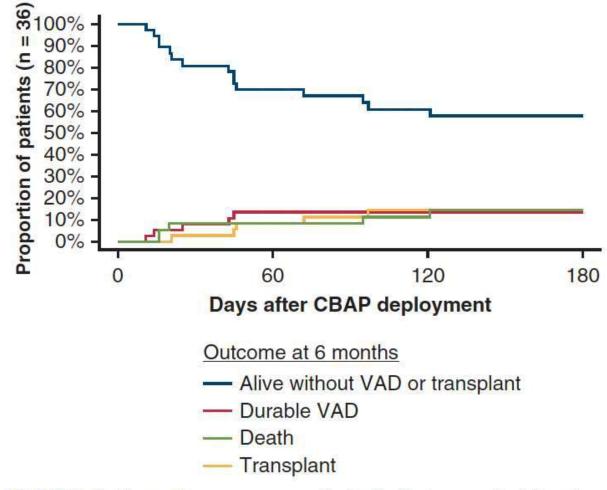
Device selection and its mechanism

Pediatric use of microaxial flow pump (Impella®)

Use of Impella® in ECMO patients (ECMELLA, ECPELLA)

# Temporary ventricular assist device support with a catheter-based axial pump: Changing the paradigm at a pediatric heart center




Sebastian C. Tume, MD,<sup>a</sup> Andres A. Fuentes-Baldemar, MD, MMSc,<sup>b</sup> Marc Anders, MD,<sup>a</sup> Joseph A. Spinner, MD,<sup>c</sup> Hari Tunuguntla, MD,<sup>c</sup> Michiaki Imamura, MD,<sup>b</sup> Asma Razavi, MD,<sup>a</sup> Edward Hickey, MD,<sup>b</sup> Gary Stapleton, MD,<sup>c</sup> Athar M. Qureshi, MD,<sup>c,d</sup> and Iki Adachi, MD

| Variable                                                            | Median [range], n (%)<br>16.8 [6.9-42.8]     |  |  |  |
|---------------------------------------------------------------------|----------------------------------------------|--|--|--|
| Age at implantation (y)                                             |                                              |  |  |  |
| Male gender (%)                                                     | 28 (75.7)                                    |  |  |  |
| Weight at implantation (kg)                                         | 61.1 [23.1-123.8]                            |  |  |  |
| Body surface area at implantation (kg/m²)                           | 1.7 [0.8-2.5]                                |  |  |  |
| Race/ethnicity Non-Hispanic White Hispanic Non-Hispanic Black Asian | 22 (59.5)<br>8 (21.6)<br>6 (16.2)<br>1 (2.7) |  |  |  |
| Etiology of circulatory failure                                     |                                              |  |  |  |
| Graft failure/rejection                                             | 16 (43.3)                                    |  |  |  |
| Cardiomyopathy                                                      | 7 (18.9)                                     |  |  |  |
| Arrhythmias                                                         | 6 (16.2)                                     |  |  |  |
| Myocarditis/endocarditis                                            | 4 (10.8)                                     |  |  |  |
| Heart failure due to CHD                                            | 4 (10.8)                                     |  |  |  |
| Invasive mechanical ventilation<br>pre-implantation                 | 17 (46.0)                                    |  |  |  |
| History of cardiac arrest                                           | 12 (32.4)                                    |  |  |  |

TABLE 2. Device characteristics (n = 43 device uses)

| Variable                                                    | Median [range], n (%) |  |  |  |
|-------------------------------------------------------------|-----------------------|--|--|--|
| Device type                                                 |                       |  |  |  |
| Large (Impella 5.0/5.5, Abiomed Inc)                        | 16 (37.2)             |  |  |  |
| Medium (Impella CP)                                         | 23 (53.5)             |  |  |  |
| Small (Impella 2.5)                                         | 4 (9.3)               |  |  |  |
| Site of implantation                                        |                       |  |  |  |
| Femoral                                                     | 25 (58.1)             |  |  |  |
| Percutaneous                                                | 23 (92.0)             |  |  |  |
| Surgical                                                    | 2 (8.0)               |  |  |  |
| Subclavian/axillary                                         | 18 (41.9)             |  |  |  |
| Surgical                                                    | 16 (88.9)             |  |  |  |
| Percutaneous                                                | 2 (11.1)              |  |  |  |
| Length of support (d)                                       |                       |  |  |  |
| Total                                                       | 7 [1-45]              |  |  |  |
| Large CBAP                                                  | 14 [6-45]             |  |  |  |
| Medium CBAP                                                 | 5 [1-20]              |  |  |  |
| Small CBAP                                                  | 4 [3-5]               |  |  |  |
| Median P-level flow                                         | 6 [2-8]               |  |  |  |
| Indications for explantation                                |                       |  |  |  |
| Cardiac recovery                                            | 26 (60.4)             |  |  |  |
| Transition to durable VAD                                   | 8 (18.6)              |  |  |  |
| Device failure/upsizing                                     | 3 (7.0)               |  |  |  |
| Transition to transplant                                    | 3 (7.0)               |  |  |  |
| Death with device                                           | 3 (7.0)               |  |  |  |
| Need for additional ECMO support after<br>CBAP implantation | 3 (7.0)               |  |  |  |

CBAP, Catheter-based axial pump; VAD, ventricular assist device; ECMO, extracorporeal membrane oxygenation.



**FIGURE 4.** Competing outcomes analysis displaying survival free from LVAD and heart transplantation (n = 37 encounters). *VAD*, Ventricular assist device; *CBAP*, catheter-based axial pump.

TABLE 3. Device complications and patient adverse events (n=43 device uses)

| Variable                         | n (%)     |  |  |  |
|----------------------------------|-----------|--|--|--|
| Major device complication        | 9 (20.9)  |  |  |  |
| Device repositioning             | 5 (11.7)  |  |  |  |
| Motor failure                    | 0 (0.0)   |  |  |  |
| Monitoring failure               | 0 (0.0)   |  |  |  |
| Compromise of cardiac structures | 4 (9.3)   |  |  |  |
| Minor device complication        | 6 (14.0)  |  |  |  |
| Suction events                   | 2 (4.7)   |  |  |  |
| Purge fluid failure              | 4 (9.3)   |  |  |  |
| Device repositioning             | 5 (11.6)  |  |  |  |
| Hemolysis                        | 20 (46.5) |  |  |  |
| Limb injury                      |           |  |  |  |
| Ischemia*                        | 1 (2.3)   |  |  |  |
| Nerve injury                     | 5 (11.6)  |  |  |  |
| Ventricular arrhythmias*         | 13 (30.2) |  |  |  |
| Neurological dysfunction         |           |  |  |  |
| Stroke                           | 0 (0.0)   |  |  |  |
| Hemorrhage                       | 0 (0.0)   |  |  |  |
| Major bleeding                   | 8 (18.6)  |  |  |  |
| Non-CNS thromboembolism          | 6 (14.0)  |  |  |  |
| Insertion site infection         | 0 (0.0)   |  |  |  |
| New-onset acute kidney injury*   | 3 (7.1%)  |  |  |  |

Trend in temporary circulatory support device

Device selection and its mechanism

Pediatric use of temporary circulatory support device

Use of Impella® in ECMO patients (ECMELLA, ECPELLA)

#### ADVANCES IN MECHANICAL CIRCULATORY SUPPORT

#### Venoarterial Extracorporeal Membrane Oxygenation for Cardiogenic Shock and Cardiac Arrest

Cardinal Considerations for Initiation and Management

ABSTRACT: Venoarterial extracorporeal membrane oxygenation (VA-ECMO)—also referred to as extracorporeal life support—is a form of temporary mechanical circulatory support and simultaneous extracorporeal gas exchange. The initiation of VA-ECMO has emerged as a salvage intervention in patients with cardiogenic shock, even cardiac arrest Prashant Rao, MD Zain Khalpey, MD, PhD Richard Smith, MSEE, CCE Daniel Burkhoff, MD, PhD Robb D. Kociol, MD

2. As a consequence,→ LAP and LVEDV go up (cardiac effect)

# 1. As ECMO flow increases, → AoP goes up and CVP comes down (systemic effect)

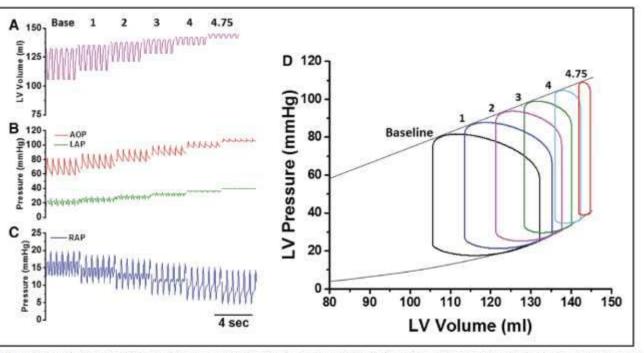
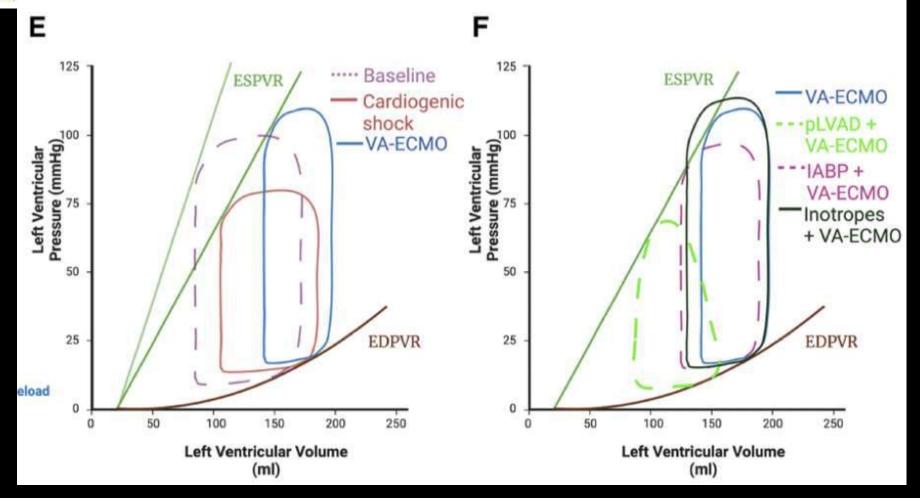



Figure 4. Hemodynamic changes that occur during acute cardiogenic shock and peripheral venoarterial extracorporeal membrane oxygenation (VA-ECMO) at increasing flow rates (1, 2, 3, 4, 4.75 L/min) with an unvented left ventricle (LV).

#### Circulation


#### FRONTIERS

Unloading the Left Ventricle in Venoarterial ECMO: In Whom, When, and How?

Saad M. Ezado, MD; Matthew Ryan, MD, PhD; Dirk W. Donker, MD, PhD; Federico Pappalardo, MD; Nicholas Barretto, MD; Luigi Camporota, MD, PhD; Susanna Price, MD, PhD; Navin K. Kapuro, MD, PhD; Navin K.

By venting LV by Impella, preload and afterload come down.

It counteracts with downsides of ECMO and decreases myocardial oxygen consumption



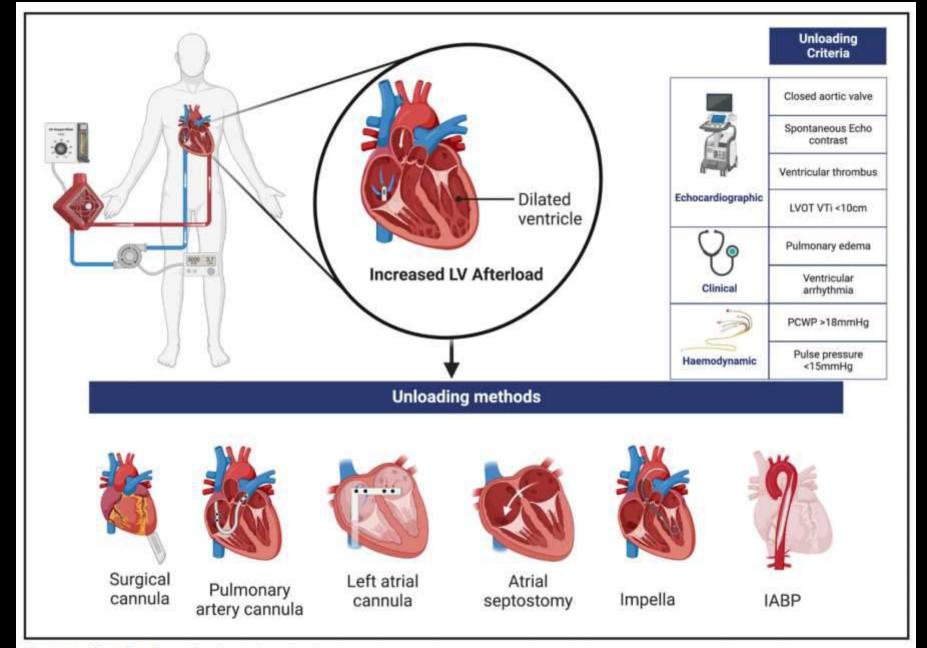



Figure 4. LV unloading criteria and methods.

Table 2. Current Randomized Clinical Trials of VA-ECMO

| Trial name                    | Inclusion<br>criteria                                                 | No. of participants | Intervention                                           | Control                                                                         | Institution                                             | Primary outcome                                                                                                            | Key secondary outcomes                                                                           | Estimated study completion |
|-------------------------------|-----------------------------------------------------------------------|---------------------|--------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------|
| EARLY-UNLOAD<br>(NCT04775472) | Cardiogenic<br>shock                                                  | 116                 | VA-ECMO +<br>atrial septos-<br>tomy within 12<br>hours | VA-ECMO<br>alone                                                                | Chonnam<br>National<br>University<br>Hospital,<br>Korea | All-cause mortal-<br>ity at 30 days                                                                                        | Rate of atrial<br>septostomy in<br>control group<br>Incidence of<br>cardiac death                | October<br>2023            |
| REVERSE<br>(NCT03431467)      | Cardiogenic<br>shock                                                  | 96                  | VA-ECMO +<br>Impella CP                                | VA-ECMO<br>alone                                                                | Multicenter,<br>United<br>States                        | Recovery from<br>cardiogenic<br>shock at 30 days<br>(survival; free<br>from MCS, trans-<br>plant, or inotropic<br>support) | Survival to hospital discharge                                                                   | January<br>2025            |
| ECLS-SHOCK<br>(NCT03637205)   | Cardiogenic<br>shock secondary<br>to acute myocar-<br>dial infarction | 420                 | VA-ECMO +/-<br>LV unloading                            | Standard care<br>(escalation to<br>other MCS [eg,<br>IABP or pLVAD]<br>allowed) | Multicenter,<br>Germany                                 | All-cause mortal-<br>ity at 30 days                                                                                        | Time to death<br>at 6- and<br>12-month<br>follow-up; dura-<br>tion of catechol-<br>amine therapy | November<br>2023           |
| ANCHOR<br>(NCT04184635)       | Cardiogenic<br>shock secondary<br>to acute myocar-<br>dial infarction | 400                 | VA-ECMO +<br>IABP                                      | Standard care<br>(no MCS de-<br>vice allowed)                                   | Multicenter,<br>France                                  | Treatment failure at 30 days (death in ECMO group or rescue ECMO in the control group)                                     | Mortality at 30<br>days; MACE at<br>30 days                                                      | November<br>2024           |
| HERACLES<br>(ISRCTN82431978)  | Cardiogenic<br>shock being<br>treated with VA-<br>ECMO                | 36                  | VA-ECMO +<br>Impella CP                                | VA-ECMO +<br>IABP                                                               | Multicenter,<br>United King-<br>dom                     | Change in device<br>coronary flow<br>reserve                                                                               | Change in<br>LVEDP; time<br>to VA-ECMO<br>decannulation                                          | February<br>2025           |

## Conclusion

• The use of temporary ventricular assist device has been increasing

• The effects of TCS on heart are different

TCS has been now used in pediatric population

• Impella<sup>®</sup> can be effective for cardiac recovery in ECMO patients